The Space of Adversarial Strategies

Blaine Hoak*, Ryan Sheatsley*, Eric **Pauley, Patrick McDaniel**

MADS&P

INTRODUCTION

Adversaries in Machine Learning

- Machine learning models are vulnerable to adversarial examples, inputs designed to induce a mismatch between model classification and human perception.
- While we have seen significant efforts towards defending against adversarial concerns, most defenses are quickly broken by new attack methods. To better understand the attack methods that \bullet models are vulnerable to, we propose a systematic approach to characterize worst-case adversaries.

Attacks that break defenses

We observe that attacks can be decomposed into *surfaces* and *travelers*, which contain collections of techniques that operate on gradients and inputs, respectively.

RESULTS

						At	tack A	lgori	thms							
Surface Components									Traveler Components							
Losses: Saliency Maps: ℓ _p -norm		Cross-Entropy Carlini-Wagner Loss Identity Loss Difference of Logits Ratio Loss SM_J, SM_D, SM_I $\ell_0, \ell_2, \ell_{\infty}$							Random-Restart: Change of Variables: Optimizer:				Enabled, Disabled Enabled, Disabled SGD, Adam, MBS, BWSG			
BTM	•	0	0	0	0	0	•	0	0	•	0	0	•	0	0	0
PGD	•	0	0	0	0	0	•	0	0	•	•	0	•	0	0	C
JSMA	0	0	•	0	•	0	0	•	0	0	0	0	•	0	0	С
DF	0	0	•	0	0	•	0	0	•	0	0	\bigcirc	•	0	0	С
CW	0	•	0	0	0	0	•	0	•	0	0	•	0	•	0	С
APGD-CE	•	0	0	0	0	0	•	0	0	•	•	0	0	0	•	С
APGD-DLR	0	0	0	•	0	0	•	0	0	•	•	0	0	0	•	С
FAB	0	0	•	0	0	•	0	0	•	0	0	0	0	0	0	
	Cr	Chil	N.	DEP	SM	SNI	SM	G	S	los	Rp	Sr	SGJ	Adam	MBS	DAS

Building a Vast Attack Space

• Within our decomposition of attacks, components are independent and mutually compatible; they can be added, omitted, or swapped out to design new attacks. • We enumerate over all possible combinations of component choices to create a vast attack space totaling 576 attacks, 568 of which were previously unexplored.

Measuring Optimality

closeness to the PEA,

Attacks are sets of components

- Our framework allows us to enumerate over components, yielding new and interesting attacks.
- This attack space allows us to evaluate models and future defenses against a comprehensive set of threats.

Generalizing attacks enables new insights

- Hypothesis testing on components enables us to explain what works well and why, uncovering potential new avenues of research into root causes of model vulnerabilities.
- We find that attack performance is highly dependent on the scenario, highlighting a need for more extensive robustness evaluations