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METHODS

INTRODUCTION

Adversaries in Machine Learning Generalization of Attacks

* Machine learning models are vulnerable to Traveler
adversarial examples, inputs designed to induce
a mismatch between model classification and
human perception. Attacks that break
 While we have seen significant efforts towards defenses
defending against adversarial concerns, most

defenses are quickly broken by new attack _ |

methods. e sedienMapi(h Tasy
 To better understand the attack methods that Defenses that l

models are vulnerable to, we propose a orevent attacks V..Surface
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systematic approach to characterize worst-case
adversaries.

 We explore how the domain, robustness
techniques, and threat model influence attack We observe that attacks can be decomposed into surfaces

and travelers, which contain collections of techniques that
operate on gradients and inputs, respectively.

performance.
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 Hypothesis testing is used to identify components that lead to performant attacks in different

scenarios.
e Resulting trends supported some commonly held beliefs (e.g., random restart is helpful) as well as
uncovered new unexpected insights (e.g., using an identity loss is better than cross entropy loss).
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Attacks are sets of components Generalizing attacks enables new insights
e Our framework allows us to enumerate over components, yielding new and * Hypothesis testing on components enables us to explain what works well and why;,
interesting attacks. uncovering potential new avenues of research into root causes of model
* This attack space allows us to evaluate models and future defenses against a vulnerabilities.
comprehensive set of threats.  We find that attack performance is highly dependent on the scenario, highlighting

a nheed for more extensive robustness evaluations



