
MADS&PMADS&P

USENIX’23

Ryan Sheatsley*, Blaine Hoak*, Eric Pauley, Patrick McDaniel

*Equal Contribution. Thursday, August 10, 2023

The Space of Adversarial
Strategies

Attacks that break
defenses

Defenses that prevent
attacks

3

Adversarial Patch
Adversarial Texture

Auto Attack

Auto Conjugate Attack

Boundary Attack

Brendel and Bethge Attack

Carlini and Wagner l0
Carlini and Wagner l2

Carlini and Wagner l∞

Carlini and Wagner ASR
Decision Tree Attack

DeepFool
DPatch

RobustDPatch

Elastic Net Attack

Fast Gradient Method

Feature Adversaries

Frame Saliency Attack

Geometric Decision Based Attack

GRAPHITE
High Confidence Low Uncertainty Attack

HopSkipJump

Imperceptible ASR

Basic Iterative Method

Projected Gradient Descent

LaserAttack LowProFool

NewtonFool

Malware Gradient Descent

Over The Air Flickering Attack PixelAttack ThresholdAttack

Jacobian Saliency Map Approach

Shadow Attack

Sign-OPT

Simple Black-box Adversarial Attack

Spatial Transforms Attack

Square Attack

Targeted Universal Perturbation Attack

Universal Perturbation Attack

Virtual Adversarial Method

Wasserstein Attack

Zeroth-Order Optimization

4

Adversarial Patch
Adversarial Texture

Auto-PGD

Auto Conjugate Attack

Boundary Attack

Brendel and Bethge Attack

Carlini and Wagner l0
Carlini and Wagner l2

Carlini and Wagner l∞

Carlini and Wagner ASR
Decision Tree Attack

DeepFool
DPatch

RobustDPatch

Elastic Net Attack

Fast Gradient Method

Feature Adversaries

Frame Saliency Attack

Geometric Decision Based Attack

GRAPHITE
High Confidence Low Uncertainty Attack

HopSkipJump

Imperceptible ASR

Basic Iterative Method

Projected Gradient Descent

LaserAttack LowProFool

NewtonFool

Malware Gradient Descent

Over The Air Flickering Attack PixelAttack ThresholdAttack

Jacobian Saliency Map Approach

Shadow Attack

Sign-OPT

Simple Black-box Adversarial Attack

Spatial Transforms Attack

Square Attack

Targeted Universal Perturbation Attack

Universal Perturbation Attack

Virtual Adversarial Method

Wasserstein Attack

Zeroth-Order Optimization

• How can we systematically represent and
evaluate attacks?

5

Formulations of this type (and their finite-sample counterparts) have a long history in robust
optimization, going back to Wald [30]. It turns out that this formulation is also particularly useful
in our context.

First, this formulation gives us a unifying perspective that encompasses much prior work on
adversarial robustness. Our perspective stems from viewing the saddle point problem as the
composition of an inner maximization problem and an outer minimization problem. Both of these
problems have a natural interpretation in our context. The inner maximization problem aims to find
an adversarial version of a given data point x that achieves a high loss. This is precisely the problem
of attacking a given neural network. On the other hand, the goal of the outer minimization problem
is to find model parameters so that the “adversarial loss” given by the inner attack problem is
minimized. This is precisely the problem of training a robust classifier using adversarial training
techniques.

Second, the saddle point problem specifies a clear goal that an ideal robust classifier should
achieve, as well as a quantitative measure of its robustness. In particular, when the parameters q
yield a (nearly) vanishing risk, the corresponding model is perfectly robust to attacks specified by
our attack model.

Our paper investigates the structure of this saddle point problem in the context of deep neural
networks. These investigations then lead us to training techniques that produce models with high
resistance to a wide range of adversarial attacks. Before turning to our contributions, we briefly
review prior work on adversarial examples and describe in more detail how it fits into the above
formulation.

2.1 A Unified View on Attacks and Defenses

Prior work on adversarial examples has focused on two main questions:

1. How can we produce strong adversarial examples, i.e., adversarial examples that fool a model
with high confidence while requiring only a small perturbation?

2. How can we train a model so that there are no adversarial examples, or at least so that an
adversary cannot find them easily?

Our perspective on the saddle point problem (2.1) gives answers to both these questions. On the
attack side, prior work has proposed methods such as the Fast Gradient Sign Method (FGSM) [11]
and multiple variations of it [18]. FGSM is an attack for an `•-bounded adversary and computes
an adversarial example as

x + # sgn(rxL(q, x, y)).

One can interpret this attack as a simple one-step scheme for maximizing the inner part of the
saddle point formulation. A more powerful adversary is the multi-step variant, which is essentially
projected gradient descent (PGD) on the negative loss function

xt+1 = Px+S
�

xt + a sgn(rxL(q, x, y))
�

.

Other methods like FGSM with random perturbation have also been proposed [29]. Clearly, all
of these approaches can be viewed as specific attempts to solve the inner maximization problem
in (2.1).

4

Workshop track - ICLR 2017

log-probability of the true class given the image: J(X, y) = � log p(y|X), this relation-
ship will be used below.

• ClipX,✏ {X 0} - function which performs per-pixel clipping of the image X 0, so the result
will be in L1 ✏-neighbourhood of the source image X . The exact clipping equation is as
follows:

ClipX,✏ {X 0} (x, y, z) = min
n
255,X(x, y, z)+✏,max

�
0,X(x, y, z)�✏,X 0(x, y, z)

 o

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).

2.1 FAST METHOD

One of the simplest methods to generate adversarial images, described in (Goodfellow et al., 2014),
is motivated by linearizing the cost function and solving for the perturbation that maximizes the cost
subject to an L1 constraint. This may be accomplished in closed form, for the cost of one call to
back-propagation:

Xadv = X + ✏ sign
�
rXJ(X, ytrue)

�

where ✏ is a hyper-parameter to be chosen.

In this paper we refer to this method as “fast” because it does not require an iterative procedure to
compute adversarial examples, and thus is much faster than other considered methods.

2.2 BASIC ITERATIVE METHOD

We introduce a straightforward way to extend the “fast” method—we apply it multiple times with
small step size, and clip pixel values of intermediate results after each step to ensure that they are in
an ✏-neighbourhood of the original image:

Xadv
0 = X, Xadv

N+1 = ClipX,✏

n
Xadv

N + ↵ sign
�
rXJ(Xadv

N , ytrue)
�o

In our experiments we used ↵ = 1, i.e. we changed the value of each pixel only by 1 on each step.
We selected the number of iterations to be min(✏+ 4, 1.25✏). This amount of iterations was chosen
heuristically; it is sufficient for the adversarial example to reach the edge of the ✏ max-norm ball but
restricted enough to keep the computational cost of experiments manageable.

Below we refer to this method as “basic iterative” method.

2.3 ITERATIVE LEAST-LIKELY CLASS METHOD

Both methods we have described so far simply try to increase the cost of the correct class, without
specifying which of the incorrect classes the model should select. Such methods are sufficient for
application to datasets such as MNIST and CIFAR-10, where the number of classes is small and all
classes are highly distinct from each other. On ImageNet, with a much larger number of classes and
the varying degrees of significance in the difference between classes, these methods can result in
uninteresting misclassifications, such as mistaking one breed of sled dog for another breed of sled
dog. In order to create more interesting mistakes, we introduce the iterative least-likely class method.
This iterative method tries to make an adversarial image which will be classified as a specific desired
target class. For desired class we chose the least-likely class according to the prediction of the trained
network on image X:

yLL = argmin
y

�
p(y|X)

.

For a well-trained classifier, the least-likely class is usually highly dissimilar from the true class, so
this attack method results in more interesting mistakes, such as mistaking a dog for an airplane.

To make an adversarial image which is classified as yLL we maximize log p(yLL|X) by mak-
ing iterative steps in the direction of sign

�
rX log p(yLL|X)

. This last expression equals

sign
�
�rXJ(X, yLL)

�
for neural networks with cross-entropy loss. Thus we have the following

procedure:

4

Fig. 8: Samples taken from the MNIST test set. The
respective output vectors are: [0, 0, 0, 0, 0, 0, 0.99, 0, 0],
[0, 0, 0.99, 0, 0, 0, 0, 0, 0], and [0, 0.99, 0, 0, 0, 0, 0, 0, 0], where
all values smaller than 10�6 have been rounded to 0.

vectors of 784 features, where each feature corresponds to a
pixel intensity taking normalized values between 0 and 1. This
input is processed by a succession of a convolutional layer (20
then 50 kernels of 5x5 pixels) and a pooling layer (2x2 filters)
repeated twice, a fully connected hidden layer (500 neurons),
and an output softmax layer (10 neurons). The output is a
10 class probability vector, where each class corresponds to
a digit from 0 to 9, as shown in Figure 8. The network then
labels the input image with the class assigned the maximum
probability, as shown in Equation 7. We train our network
using the MNIST training dataset of 60,000 samples [27].

We attempt to determine whether, using the theoretical
framework introduced in previous sections, we can effectively
craft adversarial samples misclassified by the DNN. For in-
stance, if we have an image X of a handwritten digit 0
classified by the network as label(X) = 0 and the adversary
wishes to craft an adversarial sample X

⇤ based on this image
classified as label(X⇤) = 7, the source class is 0 and the target
class is 7. Ideally, the crafting process must find the smallest
perturbation �X required to construct the adversarial sample
X

⇤ = X+ �X. A perturbation is a set of pixel intensities – or
input feature variations – that are added to X in order to craft
X

⇤. Note that perturbations introduced to craft adversarial
samples must remain indistinguishable to humans.

A. Crafting algorithm

Algorithm 2 shows the crafting algorithm used in our exper-
iments, which we implemented in Python (see Appendix A for
more information regarding the implementation). It is based
on Algorithm 1, but several details have been changed to ac-
commodate our handwritten digit recognition problem. Given
a network F, Algorithm 2 iteratively modifies a sample X by
perturbing two input features (i.e., pixel intensities) p1 and p2

selected by saliency_map. The saliency map is constructed
and updated between each iteration of the algorithm using the
DNN’s forward derivative rF(X⇤). The algorithm halts when
one of the following conditions is met: (1) the adversarial
sample is classified by the DNN with the target class t, (2) the
maximum number of iterations max_iter has been reached,
or (3) the feature search domain � is empty. The crafting
algorithm is fine-tuned by three parameters:

• Maximum distortion ⌥: this defines when the algorithm
should stop modifying the sample in order to reach the ad-

versarial target class. The maximum distortion, expressed
as a percentage, corresponds to the maximum number
of pixels to be modified when crafting the adversarial
sample, and thus sets the maximum number of iterations
max_iter (2 pixels modified per iteration) as follows:

max_iter =

�
784 ·⌥
2 · 100

⌫

where 784 = 28⇥28 is the number of pixels in a sample.
• Saliency map: subroutine saliency_map generates a

map defining which input features will be modified at
each iteration. Policies used to generate saliency maps
vary with the nature of the data handled by the considered
DNN, as well as the adversarial goals. We provide a
subroutine example later in Algorithm 3.

• Feature variation per iteration ✓: once input features
have been selected using the saliency map, they must
be modified. The variation ✓ introduced to these features
is another parameter that the adversary must set, in
accordance with the saliency maps she uses.

The problem of finding good values for these parameters is
a goal of our current evaluation, and is discussed later in
Section V. For now, note that human perception is a limiting
factor as it limits the acceptable maximum distortion and
feature variation introduced. We now show the application of
our framework with two different adversarial strategies.

Algorithm 2 Crafting adversarial samples for LeNet-5
X is the benign image, Y⇤ is the target network output, F is
the function learned by the network during training, ⌥ is the
maximum distortion, and ✓ is the change made to pixels.
Input: X, Y⇤, F, ⌥, ✓

1: X
⇤ X

2: � = {1 . . . |X|} . search domain is all pixels
3: max_iter =

⌅
784·⌥
2·100

⇧

4: s = argmaxj F(X⇤)j . source class
5: t = argmaxj Y

⇤
j . target class

6: while s 6= t & iter < max_iter & � 6= ; do
7: Compute forward derivative rF(X⇤)
8: p1, p2 = saliency_map(rF(X⇤),�,Y

⇤)
9: Modify p1 and p2 in X

⇤ by ✓

10: Remove p1 from � if p1 == 0 or p1 == 1
11: Remove p2 from � if p2 == 0 or p2 == 1
12: s = argmaxj F(X⇤)j
13: iter++
14: end while
15: return X

⇤

B. Crafting by increasing pixel intensities

The first strategy to craft adversarial samples is based
on increasing the intensity of some pixels. To achieve this
purpose, we consider 10 samples of handwritten digits from
the MNIST test set, one from each digit class 0 to 9. We use
this small subset of samples to illustrate our techniques. We
scale up the evaluation to the entire dataset in Section V. Our

Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack

Note that replacing z by x(i) + � we can rewrite this as

argmin
�2Rd

���x(i) + � � xorig

���
p

s.th.
D
w, x(i) + �

E
+ b = 0, li  xi + �i  ui.

This can be interpreted as the minimization of the distance
of the next iterate x(i) + � to the target point xorig so that
x(i) + � lies on the intersection of the (approximate) deci-
sion hyperplane and the box C. This point of view on the
projection projp(xorig,⇡s, C) again justifies using a convex
combination of the two projections in our scheme in (10).

Backward step: The described scheme finds in a few iter-
ations adversarial perturbations. However, we are interested
in minimizing their norms. Thus, once we have a new point
x(i+1), we check whether it is assigned by f to a class
different from c. In this case, we apply

x(i+1) = (1� �)xorig + �x(i+1), � 2 (0, 1), (11)

that is we go back towards xorig on the segment
[x(i+1), xorig], effectively starting again the algorithm at a
point which is close to the decision boundary. In this way,
due to the bias of the method towards xorig we successively
find adversarial perturbations of smaller norm, meaning that
the algorithm tracks the decision boundary while getting
closer to xorig. We fix � = 0.9 in all experiments.

Final search: Our scheme finds points close to the deci-
sion boundary but often they are slightly off as the linear
approximation is not exact and we apply the extrapolation
step with ⌘ > 1. Thus, after finishing Niter iterations of our
algorithmic scheme, we perform a last, fast step to further
improve the quality of the adversarial examples. Let xout
be the closest point to xorig classified differently from c,
say s 6= c, found with the iterative scheme. It holds that
fs(xout)� fc(xout) > 0 and fs(xorig)� fc(xorig) < 0. This
means that, assuming f continuous, there exists a point x⇤

on the segment [xout, xorig] such that fs(x⇤) � fc(x⇤) = 0
and kx⇤

� xorigkp < kxout � xorigkp. If f is linear

x⇤ = xout �
(fs(xout)� fc(xout)) (xout � xorig)

fs(xout)� fc(xout) + fs(xorig)� fc(xorig)
.

(12)
Since f is non-linear, we compute iteratively for a few steps

xtemp = xout �
(fs(xout)� fc(xout)) (xout � xorig)

fs(xout)� fc(xout) + fs(xorig)� fc(xorig)
,

(13)
each time replacing in (13) xout with xtemp if fs(xtemp) �
fc(xtemp) > 0 or xorig with xtemp if instead fs(xtemp) �
fc(xtemp) < 0. With this kind of modified binary search one
can find a better adversarial sample with the cost of a few
forward passes (which is fixed to 3 in all experiments).

Algorithm 1 FAB-attack
Input : xorig original point, c original class,

Nrestarts, Niter,↵max,�, ⌘, ✏, p
Output :xout adversarial example
u +1
for j = 1, ... , Nrestarts do

if j = 1 then x(0)
 xorig;

else x(0)
 randomly sampled s.th.

��x(0)
� xorig

��
p
=

min{u,✏}/2;
for i = 0, ... , Niter � 1 do

s argmin
l 6=c

|fl(x(i))�fc(x
(i))|

krfl(x(i))�rfc(x(i))k
q

�(i) projp(x(i),⇡s, C)

�(i)orig projp(xorig,⇡s, C)
compute ↵ as in Equation (9)
x(i+1)

 projC
⇣
(1� ↵)

⇣
x(i) + ⌘�(i)

⌘

+ ↵(xorig + ⌘�(i)orig)
⌘

if x(i+1) is not classified as c then
if
��x(i+1)

� xorig
��
p
< u then

xout x(i+1)

u
��x(i+1)

� xorig
��
p

end
x(i+1)

 (1� �)xorig + �x(i+1)

end
end

end
perform 3 steps of final search on xout as in (13)

Random restarts: So far all the steps are deterministic.
To improve the results, we introduce the option of random
restarts, that is x(0) is randomly sampled in the proximity
of xorig instead of being xorig itself. Most attacks benefit
from random restarts, e.g. (Madry et al., 2018; Zheng et al.,
2019), especially dealing with models trained for robustness
(Mosbach et al., 2018), as it allows a wider exploration of
the input space. We choose to sample from the lp-sphere
centered in the original point with radius half the lp-norm of
the current best adversarial perturbation (or a given thresh-
old if no adversarial example has been found yet).

Computational cost: Our attack, in Algorithm 1, con-
sists of two main operations: the computation of f and
its gradients and solving the projection (2). We perform,
for each iteration, a forward and a backward pass of the
network in the gradient step and a forward pass in the back-
ward step. The projection can be efficiently implemented
to run in batches on the GPU and its complexity depends
only on the input dimension. Thus, except for shallow mod-
els, its cost is much smaller than the passes through the
network. We can approximate the computational cost of

Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks

(Andriushchenko et al., 2020). Importantly, these methods
have a limited amount of parameters which generalize well
across classifiers and datasets. In Sec. 5, we combine our
two new versions of PGD with FAB and Square Attack to
form a parameter-free, computationally affordable and user-
independent ensemble of complementary attacks to estimate
adversarial robustness, named AutoAttack.

We test AutoAttack in a large-scale evaluation (Sec. 6) on
over 50 classifiers from 35 papers proposing robust models,
including randomized defenses, from recent leading confer-
ences. Although using only five restarts for each of the three
white-box attacks contained in AutoAttack, in all except
two cases the robust test accuracy obtained by AutoAttack
is lower than the one reported in the original papers (our
slightly more expensive AutoAttack+ is better in all but one
case). For 13 models we reduce the robust accuracy by more
than 10% and identify several broken defenses.

We do not argue that AutoAttack is the ultimate adversarial
attack but rather that it should become the minimal test for
any new defense, since it reliably reaches good performance
in all tested models, without any hyperparameter tuning and
at a relatively low computational cost. At the same time our
large-scale evaluation identifies the current state-of-the-art
and which of the recent ideas are actually effective.

2. Adversarial examples and PGD
Let g : D ™ Rd ≠æ RK be a K-class classifier taking
decisions according to arg max

k=1,...,K
gk(·) and xorig œ Rd a point

which is correctly classified by g as c. Given a metric d(·, ·)
and ‘ > 0, the threat model (feasible set of the attack) is de-
fined as {z œ D | d(xorig, z) Æ ‘}. Then z is an adversarial
sample for g at xorig wrt the threat model if

arg max
k=1,...,K

gk(z) ”= c, d(xorig, z) Æ ‘ and z œ D.

To find z it is common to define some surrogate function L
such that solving the constrained optimization problem

max
zœD

L(g(z), c) such that “(xorig, z) Æ ‘, z œ D (1)

enforces z not to be assigned to class c. In image classi-
fication, the most popular threat models are based on lp-
distances, i.e. d(x, z) := Îz ≠ xÎp, and D = [0, 1]d. Since
the projection on the lp-ball for p œ {2, Œ} is available in
closed form, Problem (1) can be solved with Projected Gra-
dient Descent (PGD). Given f : Rd ≠æ R, S µ Rd and the
problem max

xœS
f(x), the iterations of PGD are defined for

k = 1, . . . , Niter as x(k+1) = PS
!
x(k) + ÷(k)Òf(x(k))

"
,

where ÷(k) is the step size at iteration k and PS is the projec-
tion onto S. Using the cross-entropy (CE) loss as objective
L, (Kurakin et al., 2017; Madry et al., 2018) introduced the

Algorithm 1 APGD
1: Input: f , S, x(0), ÷, Niter, W = {w0, . . . , wn}
2: Output: xmax, fmax
3: x(1) Ω PS

!
x(0) + ÷Òf(x(0))

"

4: fmax Ω max{f(x(0)), f(x(1))}
5: xmax Ω x(0) if fmax © f(x(0)) else xmax Ω x(1)

6: for k = 1 to Niter≠1 do
7: z(k+1) Ω PS

!
x(k) + ÷Òf(x(k))

"

8: x(k+1) Ω PS

1
x(k) + –(z(k+1) ≠ x(k))

+(1 ≠ –)(x(k) ≠ x(k≠1))
2

9: if f(x(k+1)) > fmax then
10: xmax Ω x(k+1) and fmax Ω f(x(k+1))
11: end if
12: if k œ W then
13: if Condition 1 or Condition 2 then
14: ÷ Ω ÷/2 and x(k+1) Ω xmax
15: end if
16: end if
17: end for

so-called PGD-attack, which is currently the most popular
white-box attack. In their formulation ÷(k) = ÷ for every k,
i.e. the step size is fixed, and as initial point x(0) either xorig
or xorig + ’ is used, where ’ is randomly sampled such that
x(0) satisfies the constraints. Moreover, steepest descent is
done according to the norm of the threat model (e.g. for lŒ
the sign of the gradient is used).

3. Auto-PGD: A budget-aware step size-free
variant of PGD

We identify three weaknesses in the standard formulation
of the PGD-attack and how it is used in the context of ad-
versarial robustness. First, the fixed step size is suboptimal,
as even for convex problems this does not guarantee con-
vergence, and the performance of the algorithm is highly
influenced by the choice of its value, see e.g. (Mosbach
et al., 2018). Second, the overall scheme is in general ag-
nostic of the budget given to the attack: as we show, the
loss plateaus after a few iterations, except for extremely
small step sizes, which however do not translate into bet-
ter results. As a consequence, judging the strength of an
attack by the number of iterations is misleading, see also
(Carlini et al., 2019). Finally, the algorithm is unaware of
the trend, i.e. does not consider whether the optimization
is evolving successfully and is not able to react to this.

3.1. Auto-PGD (APGD) algorithm

In our automatic scheme we aim at fixing these issues. The
main idea is to partition the available Niter iterations in an

BIM

PGD

APGD

Workshop track - ICLR 2017

log-probability of the true class given the image: J(X, y) = � log p(y|X), this relation-
ship will be used below.

• ClipX,✏ {X 0} - function which performs per-pixel clipping of the image X 0, so the result
will be in L1 ✏-neighbourhood of the source image X . The exact clipping equation is as
follows:

ClipX,✏ {X 0} (x, y, z) = min
n
255,X(x, y, z)+✏,max

�
0,X(x, y, z)�✏,X 0(x, y, z)

 o

where X(x, y, z) is the value of channel z of the image X at coordinates (x, y).

2.1 FAST METHOD

One of the simplest methods to generate adversarial images, described in (Goodfellow et al., 2014),
is motivated by linearizing the cost function and solving for the perturbation that maximizes the cost
subject to an L1 constraint. This may be accomplished in closed form, for the cost of one call to
back-propagation:

Xadv = X + ✏ sign
�
rXJ(X, ytrue)

�

where ✏ is a hyper-parameter to be chosen.

In this paper we refer to this method as “fast” because it does not require an iterative procedure to
compute adversarial examples, and thus is much faster than other considered methods.

2.2 BASIC ITERATIVE METHOD

We introduce a straightforward way to extend the “fast” method—we apply it multiple times with
small step size, and clip pixel values of intermediate results after each step to ensure that they are in
an ✏-neighbourhood of the original image:

Xadv
0 = X, Xadv

N+1 = ClipX,✏

n
Xadv

N + ↵ sign
�
rXJ(Xadv

N , ytrue)
�o

In our experiments we used ↵ = 1, i.e. we changed the value of each pixel only by 1 on each step.
We selected the number of iterations to be min(✏+ 4, 1.25✏). This amount of iterations was chosen
heuristically; it is sufficient for the adversarial example to reach the edge of the ✏ max-norm ball but
restricted enough to keep the computational cost of experiments manageable.

Below we refer to this method as “basic iterative” method.

2.3 ITERATIVE LEAST-LIKELY CLASS METHOD

Both methods we have described so far simply try to increase the cost of the correct class, without
specifying which of the incorrect classes the model should select. Such methods are sufficient for
application to datasets such as MNIST and CIFAR-10, where the number of classes is small and all
classes are highly distinct from each other. On ImageNet, with a much larger number of classes and
the varying degrees of significance in the difference between classes, these methods can result in
uninteresting misclassifications, such as mistaking one breed of sled dog for another breed of sled
dog. In order to create more interesting mistakes, we introduce the iterative least-likely class method.
This iterative method tries to make an adversarial image which will be classified as a specific desired
target class. For desired class we chose the least-likely class according to the prediction of the trained
network on image X:

yLL = argmin
y

�
p(y|X)

.

For a well-trained classifier, the least-likely class is usually highly dissimilar from the true class, so
this attack method results in more interesting mistakes, such as mistaking a dog for an airplane.

To make an adversarial image which is classified as yLL we maximize log p(yLL|X) by mak-
ing iterative steps in the direction of sign

�
rX log p(yLL|X)

. This last expression equals

sign
�
�rXJ(X, yLL)

�
for neural networks with cross-entropy loss. Thus we have the following

procedure:

4

Algorithm 2 DeepFool: multi-class case
1: input: Image x, classifier f .
2: output: Perturbation r̂.
3:
4: Initialize x0 x, i 0.
5: while k̂(xi) = k̂(x0) do

6: for k 6= k̂(x0) do

7: w0
k rfk(xi)�rfk̂(x0)

(xi)

8: f 0
k fk(xi)� fk̂(x0)

(xi)
9: end for

10: l̂ argmink 6=k̂(x0)
|f 0

k|
kw0

kk2

11: ri
|f 0

l̂ |
kw0

l̂
k2
2
w0

l̂

12: xi+1 xi + ri
13: i i+ 1
14: end while

15: return r̂ =
P

i ri

to find minimal adversarial perturbations for any `p norm
(p 2 [1,1)). To do so, the update steps in line 10 and
11 in Algorithm 2 must be respectively substituted by the
following updates

l̂ argmin
k 6=k̂(x0)

|f 0
k|

kw0
kkq

, (11)

ri
|f 0

l̂
|

kw0
l̂
kqq

|w0
l̂
|q�1 � sign(w0

l̂
), (12)

where � is the pointwise product and q = p
p�1 .3 In par-

ticular, when p = 1 (i.e., the supremum norm `1), these
update steps become

l̂ argmin
k 6=k̂(x0)

|f 0
k|

kw0
kk1

, (13)

ri
|f 0

l̂
|

kw0
l̂
k1

sign(w0
l̂
). (14)

4. Experimental results

4.1. Setup

We now test our DeepFool algorithm on deep convo-
lutional neural networks architectures applied to MNIST,
CIFAR-10, and ImageNet image classification datasets. We
consider the following deep neural network architectures:

• MNIST: A two-layer fully connected network, and a
two-layer LeNet convoluational neural network archi-
tecture [9]. Both networks are trained with SGD with
momentum using the MatConvNet [20] package.

3To see this, one can apply Holder’s inequality to obtain a lower bound
on the `p norm of the perturbation.

• CIFAR-10: We trained a three-layer LeNet architec-
ture, as well as a Network In Network (NIN) architec-
ture [11].

• ILSVRC 2012: We used CaffeNet [7] and GoogLeNet
[17] pre-trained models.

In order to evaluate the robustness to adversarial pertur-
bations of a classifier f , we compute the average robustness
⇢̂adv(f), defined by

⇢̂adv(f) =
1

|D |
X

x2D

kr̂(x)k2
kxk2

, (15)

where r̂(x) is the estimated minimal perturbation obtained
using DeepFool, and D denotes the test set4.

We compare the proposed DeepFool approach to state-
of-the-art techniques to compute adversarial perturbations
in [18] and [4]. The method in [18] solves a series of pe-
nalized optimization problems to find the minimal pertur-
bation, whereas [4] estimates the minimal perturbation by
taking the sign of the gradient

r̂(x) = ✏ sign (rxJ(✓,x, y)) ,

with J the cost used to train the neural network, ✓ is the
model parameters, and y is the label of x. The method is
called fast gradient sign method. In practice, in the absence
of general rules to choose the parameter ✏, we chose the
smallest ✏ such that 90% of the data are misclassified after
perturbation.5

4.2. Results

We report in Table 1 the accuracy and average robustness
⇢̂adv of each classifier computed using different methods.
We also show the running time required for each method to
compute one adversarial sample. It can be seen that Deep-
Fool estimates smaller perturbations (hence closer to min-
imal perturbation defined in (1)) than the ones computed
using the competitive approaches. For example, the aver-
age perturbation obtained using DeepFool is 5 times lower
than the one estimated with [4]. On the ILSVRC2012 chal-
lenge dataset, the average perturbation is one order of mag-
nitude smaller compared to the fast gradient method. It
should be noted moreover that the proposed approach also
yields slightly smaller perturbation vectors than the method
in [18]. The proposed approach is hence more accurate
in detecting directions that can potentially fool neural net-
works. As a result, DeepFool can be used as a valuable
tool to accurately assess the robustness of classifiers. On

4For ILSVRC2012, we used the validation data.
5Using this method, we observed empirically that one cannot reach

100% misclassification rate on some datasets. In fact, even by increas-
ing ✏ to be very large, this method can fail in misclassifying all samples.

DeepFool

FAB

JSMA

Surfaces compute the perturbation

Travelers apply perturbations and other
techniques that update the input

6

Components of the traveler and surface. Arrows represent the
progression of an an attack through components at each iteration.

Optional

Required

Components

7

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

∇CE(x, y)

∇fy(x)

8

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
(∇fy(x)−∇fk(x))

∇CE(x, y)

∇fy(x)

9

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
(∇fy(x)−∇fk(x))

sgn(

∇fy(x)

∇CE(x, y))α ·

·

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22

10

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ·

11

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22

sgn(∇CE(x, y)α ·)

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)−∇fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ·

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)− fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

PGD: δ = α · sgn(∇CE(x, y)), x0 = x+ U(−ϵ, ϵ), xi+1 = xi + δ

DeepFool: δ =
|fy(x)− fk(x)|

∥∇fy(x)− fk(x)∥22
· (∇fy(x)−∇fk(x)), x0 = x, xi+1 = xi + δ

12

13

Our extensible decomposition of mutually compatible and independent components
allows us to build a vast attack space containing 576 attacks.

14

The Pareto Ensemble Attack
`p-norms. Specifically, we incorporate and measure the time
it takes to produce adversarial examples, therein extending
our definition of budget as:

B(p,q,x) = `p(x)+q ·T (x) (2)

where p is the desired norm, q parameterizes the importance
of computational cost versus the introduced distortion, x is the
adversarial example, and T returns the compute time neces-
sary to produce x. We note that the precise value of q depends
on the threat model; adversaries who are compute-constrained
may prioritize time twice as much as distortion (i.e., q = 2),
while adversaries with strong compute may not consider time
at all (i.e., q = 0, as is done in standard evaluations). In sec-
tion 5, we find that some attacks consume prohibitively large
amounts of budget when compute is measured, and thus, cur-
rent threat models (which only measure `p distance) fail to
generalize adversarial capabilities.

4.2 Pareto Ensemble Attack
With a realistic interpretation of budgets, we revisit a fun-
damental question: Does an optimal attack exist? Attacks
measure distortion through different `p-norms, can require dif-
ferent amounts of compute, and have varying budgets (which
is notably true for robustness evaluations). Thus, answering
this question is non-trivial, especially in the absence of any
meaningfully large attack space.

A single definition that accurately characterizes optimality
across attacks, while incorporating these confounding factors,
is challenging. Yet, we can say some attack A is optimal if,
for a given threat model, A bounds all other attacks for an
adversarial goal (i.e., A must lower-bound all attacks when
minimizing model accuracy across budgets). Of the 576 at-
tacks that we evaluated, no single attack met this definition.
Thus, we conclude that the optimal attack are best character-
ized by an ensemble of attacks.

To this end, we introduce the Pareto Ensemble Attack
(PEA), a theoretical attack which, for a given budget and ad-
versarial goal, returns the set of adversarial examples that
best meet the adversarial goal, within the specified budget
(in other words, the Pareto frontier). The PEA is attractive for
our analysis, in that it serves as a meaningful baseline from
which we can compare attack performance to (discussed in
the following section). Moreover, as an ensemble, the PEA
naturally evolves as the evaluated attack space expands. We
formally define the PEA as:

PEA =
[

b2B

(
argmin

xA2A

Acc(f (xA), ŷ) | B(p,q,xA)  b

)

where b is a budget in a list of budgets B, xA is the set of
adversarial examples produced by attack A from a space of
attacks A , f is a model, ŷ is the set of true labels for xA, B is a
function used to measure budget (i.e., Equation 2), Acc returns

0.0 0.2 0.4 0.6 0.8 1.0
Budget Consumed

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
A

cc
ur

ac
y

A1

A2

A3

PEA

Figure 2: The Optimal Attack — The PEA lower-bounds all
attacks across the range of budgets. Attacks A1 and A3 define
the PEA for different budget ranges, while A2 is never part
of the PEA. The area between the PEA and attack curves are
shown with vertical bars.

model accuracy, p is an `p-norm, and q controls the sensitivity
to computational resources. Concisely, the PEA returns the set
of adversarial examples whose model accuracy is minimal
and within budget. Moreover, we provide a visualization of
the PEA in Figure 2, where the PEA forms the lower envelope
of model accuracy across budgets. We highlight that if there
was some attack A0 which achieved the lowest accuracy across
all budgets (for some domain), then the PEA = A0. It has been
suggested by some in the community that algorithms such as
PGD might be optimal for some application [5, 33, 62]. Our
formulation of the PEA and measure of optimality allows us
to test this hypothesis.

Measuring Optimality. The PEA yields a baseline from
which we can fairly assess the performance of attacks. As the
PEA meets the definition of optimal (that is, it bounds attack
performance), we can evaluate attack performance relative
to the PEA. Intuitively, attacks that closely track the PEA are
performant, while those that do not are suboptimal. Mathemat-
ically, this can be measured as the area between the curves
of the PEA and some attack A. We note that our definition
of optimality is: (1) relative to the attacks considered (and
not measured against a set of provably worst-case adversarial
examples or certified robustness [5, 43, 57]), and (2) as at-
tacks are ranked by area, prefers attacks that are consistently
performant (i.e., across the budget space). We acknowledge
this measurement favors attacks whose behaviors are stable
(which we argue most popular white-box attacks exhibit);
other modalities may benefit from other cost measures.

For example, in Figure 2, the area between the PEA and at-
tack A2 is maximal, minimal for attack A3, and somewhere in
between for attack A1. Thus, we conclude that the worst-case
adversary would use A3 if bound by small budgets, otherwise
A1 (and never A2). This approach to measuring attack per-

6

• Questions
• When and why are attacks performant?

• Setup
• Adversary has access to model parameters
• CIC-MalMem2022, Malware Detection, 58k total (k-Fold), 4 classes
• CIFAR-10, Object Classification, 50k train, 10k test, 10 classes
• Fashion-MNIST, Clothing Classification, 60k train, 10k test, 10 classes
• MNIST, Digit Recognition, 60k train, 10k test, 10 classes
• NSL-KDD, Network Intrusion Detection, 125k train, 22k test, 5 classes
• Phishing Websites, Phishing Detection, 10k total (k-Fold), 2 classes
• UNSW-NB15, Network Intrusion Detection, 101k train, 53k test, 10 classes

15

Evaluation

16

Hypothesis Testing Illuminates Effective Strategies

Component H1 Component H2 Condition p-value Effect Size

1. SGD is better than BWSGD when Dataset = MNIST <2.2⇥10−308 99 %
2. Adam is better than BWSGD when Dataset = MNIST <2.2⇥10−308 99 %

...
...

84. Identity Loss is better than Difference of Logits Ratio Loss when Dataset = NSL-KDD <2.2⇥10−308 93 %
85. SGD is better than BWSGD when SaliencyMap = Jacobian Saliency Map <2.2⇥10−308 92 %

...
...

393. DeepFool Saliency Map is better than Jacobian Saliency Map when Dataset = FMNIST <5⇥10−6 66 %
394. Cross-Entropy is better than Carlini-Wagner Loss when Change of Variables = Disabled <5⇥10−6 61 %

...
...

1689. `0 is better than `2 when Threat Model = `2 +1.0 9.8⇥10−1 50 %
1690. Identity Saliency Map is better than DeepFool Saliency Map when Threat Model = `• +0.4 1.0 49 %

Table 3: The evaluated hypotheses for non-robust models. The top 344 hypotheses have a p-value that exhibits 64 bit underflow.
When sorted by effect size, the top 50 % of hypotheses have an effect size greater than 80 %.

to a better attack, as it more closely tracks the PEA). Note that
the p-values for many hypotheses underflowed 64 bit floating
point precision, implying that the results of the test are highly
significant across all datasets and threat models. A subset of
of hypotheses are represented in Table 3.

We find many highly-significant correlations in the re-
sults across the space of hypotheses. Specifically, we set
a significance threshold proportional to the number of hy-
pothesis tests we evaluated to minimize false positives2:
p < 0.01

1690 = 5⇥10�6. We found that 1536 (90 %) of hypothe-
ses were below this threshold. We highlight the most promi-
nent conclusions among these 1536 hypothesis: (1) Change of
Variables was found to be disadvantageous—86 hypotheses
involving Change of Variables met our threshold; all 86 were
against its use, (2) Adam was superior to all other optimizers—
503 hypotheses comparing Adam to other optimizers met our
threshold, of which 50 % of them ruled in favor of Adam (with
SGD at 33 %, and MBS at 16 %), (3) Random-Restart was found
to be preferable across 61 % of hypotheses (51 of 83), (4) `•-
targeted attacks, at 79 % (163 of 205) were superior to both
`0- and `2-targeted (which were only favorable 16 % (34 of
205) and 4 % (8 of 205) of the time, respectively), (5) using
no saliency map (i.e., SMI) was better 70 % (131 of 187) of
the time, (6) perhaps surprisingly, using no loss function was
more advantageous 47 % (224 of 472) of the time, over CE
and CWL, which were useful 34 % (161 of 472) and 18 % (87
of 472) of the time, respectively, and (7) contrary to common
practice, using `•-based attacks were sometimes superior to
`2-based attacks for `2-based threat models (21 of 42); this re-
sult would suggest that perturbing based on the magnitude of
gradients, while effective, can be excessive (when measuring
cost under `2) and unnecessary to meet adversarial goals.

We highlight some key takeaways from this experiment: (1)
These hypothesis tests provide statistical evidence of some
common practices within the community (using Random-
Restart and the superiority of Adam), while also demonstrating
some perhaps surprising conclusions, such as the detriment
of using Cross-Entropy over no loss function at all. (2) We

2One would expect evaluating 1000 hypotheses at p < 0.01 significance
would result in 10 false positives, for example.

emphasize the utility of hypothesis testing for threat modeling
as well: the tests provide a schema for performing worst-case
benchmarks in their respective domain. For example, when
benchmarking MNIST against `0-based adversaries, attacks
that use the Jacobian Saliency Map are likely to outper-
form attacks that use DeepFool Saliency Map.

5.4.3 The Effect of Model Robustness

As shown in Figure 6, robust models can have a significant im-
pact on attack rankings. Here, we investigate why such broad
phenomena occur. Specifically, we investigate how attack pa-
rameter choices change performance on a robust versus a
non-robust model. We repeat our hypothesis testing on robust
models only and compare the hypotheses most affected (that
is, the largest changes in effect size) by robust models.

Table 4 provides a listing of the top pairs of hypotheses,
sorted by the change in effect size from a non-robust to robust
model (labeled as delta). Many of the top hypotheses when
migrating from non-robust to robust models largely concern
CIFAR-10 and MalMem, which were broadly the most unique
phenomena across our experiments. Specifically, we see large
changes in losses and saliency maps for the attacks that were
effective at attacking robust models. The emphasis on CE
could be in part attributed to the fact that both the model is
trained on this loss as well as used by PGD, the attack used to
generate adversarial examples within minibatches. This obser-
vation suggests that alignment between between attack losses
and losses used for adversarial training is highly effective at
attacking robust models.

Beyond the influence of loss on CIFAR-10 and MalMem,
most of our tested hypotheses remained relatively unaffected
by model robustness: of the 1690 hypotheses tested, only
334 had an effect size change of 10 % or greater between
robust and non-robust models. This implies that, while many
of the factors that make attacks effective do not vary between
normally- and adversarially-trained models, the subset that
does vary accounts for a vast difference in attack effectiveness.

12

17

Hypothesis Testing Illuminates Effective Strategies

• Change of Variables à 100% disabled, 0% enabled
• Optimizers à 50% Adam, 33% SGD, 16% MBS, 1% BWSGD
• Random Restart à 61% enabled, 39% disabled
• Saliency Maps à 70% no Saliency Map, 30% either DeepFool or

JSMA Saliency Map
• Loss à 47% Identity Loss, 34% Cross Entropy, 18% Carlini Wagner

Loss, 1% DLR Loss

18

Hypothesis Testing Illuminates Effective Strategies

• Change of Variables à 100% disabled, 0% enabled
• Optimizers à 50% Adam, 33% SGD, 16% MBS, 1% BWSGD
• Random Restart à 61% enabled, 39% disabled
• Saliency Maps à 70% no Saliency Map, 30% either DeepFool or

JSMA Saliency Map
• Loss à 47% Identity Loss, 34% Cross Entropy, 18% Carlini Wagner

Loss, 1% DLR Loss

19

Hypothesis Testing Illuminates Effective Strategies

• Change of Variables à 100% disabled, 0% enabled
• Optimizers à 50% Adam, 33% SGD, 16% MBS, 1% BWSGD
• Random Restart à 61% enabled, 39% disabled
• Saliency Maps à 70% no Saliency Map, 30% either DeepFool or

JSMA Saliency Map
• Loss à 47% Identity Loss, 34% Cross Entropy, 18% Carlini

Wagner Loss, 1% DLR Loss

20

Permutable components opens a new space of evasion attacks

Performance on images does not translate to security-critical domains

Hypothesis testing reveals context-dependent effective components

GitHub Repo: https://github.com/sheatsley/attacks

Thank you

MADS&P

https://hoak.me

bhoak@cs.wisc.edu

@blaine_hoak

blainehoak

